Last edited 2 years ago
by Demo writer

Impulse response and Template:Languages: Difference between pages

(Difference between pages)
No edit summary
Tag: 2017 source edit
 
No edit summary
Tag: 2017 source edit
 
Line 1: Line 1:
{{ContentNav|homelink=Documentation System|hometext=3|pagePrevious=Electric Pallet Truck Alligator{{!}}Operating instructions|pageNext=:Category:Bike{{!}}Categorized product images}}
<includeonly><templatestyles src="Languages/styles.css" /><div class="zeroheight">
<!-- define variables, add language codes as needed //-->
{{#vardefine:cl|{{CONTENTLANG}}}}
{{#vardefine:l1|de}}
{{#vardefine:l2|fr}}
{{#vardefine:l3|nl}}


So far circuits have been driven by a DC source, an AC source and an exponential source. If we can find the current of a circuit generated by a Dirac delta function or impulse voltage source δ, then the convolution integral can be used to find the current to any given voltage source!
{{#vardefine:switcher|{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}|[[{{NAMESPACE}}:{{PAGENAME}}{{!}}{{#var:cl}}]]|}}{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l1}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l1}}{{!}}{{#var:l1}}]]|}}{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l2}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l2}}{{!}}{{#var:l2}}]]|}}{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l3}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l3}}{{!}}{{#var:l3}}]]|}}}}
==Example Impulse Response==
{{#vardefine:clswitcher|[[{{NAMESPACE}}:{{PAGENAME}}|{{#var:cl}}]]{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l1}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l1}}{{!}}{{#var:l1}}]]|}}{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l2}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l2}}{{!}}{{#var:l2}}]]|}}{{#ifexist:{{NAMESPACE}}:{{PAGENAME}}/{{#var:l3}}|[[{{NAMESPACE}}:{{PAGENAME}}/{{#var:l3}}{{!}}{{#var:l3}}]]|}}}}
The current is found by taking the derivative of the current found due to a DC voltage source! Say the goal is to find the δ current of a series LR circuit ... so that in the future the convolution integral can be used to find the current given any arbitrary source.
<!-- set tracking property //-->
 
[[Languages/tracklang::{{#switch: {{SUBPAGENAME}}|{{#var:l1}}={{#var:l1}}|{{#var:l2}}={{#var:l2}}|{{#var:l3}}={{#var:l3}}|{{#var:cl}}}}]]
Choose a DC source of 1 volt (the real Vs then can scale off this). The particular homogeneous solution (steady state) is 0. The homogeneous solution to the non-homogeneous equation has the form:
<!-- uncomment if you want to use tracking categories
 
{{#switch: {{SUBPAGENAME}}|{{#var:l1}}=[[Category:{{#var:l1}}]]|{{#var:l2}}=[[Category:{{#var:l2}}]]|{{#var:l3}}=[[Category:{{#var:l3}}]]|[[Category:{{#var:cl}}]]}} //-->
:<math>i(t) = Ae^{-\frac{t}{\frac{L}{R}}} + C </math>
</div>
 
<div id="langbar-hz">{{DISPLAYTITLE:{{{1|}}}}}<div class="lang-button" role="button" aria-label="selectlanguage"><span class="bi bi-globe2"></span>
Assume the current initially in the inductor is zero. The initial voltage is going to be 1 and is going to be across the inductor (since no current is flowing):
{{#switch: {{SUBPAGENAME}}
 
|{{#var:l1}}={{#var:switcher}}
:<math>v(t) = L{d i(t) \over dt}</math>:<math>v(0) = 1 = L * (-\frac{A R}{L})</math>:<math>A = -1/R</math>
|{{#var:l2}}={{#var:switcher}}
 
|{{#var:l3}}={{#var:switcher}}
If the current in the inductor is initially zero, then:
|{{#var:clswitcher}}}}</div></div></includeonly>
 
<noinclude>
:<math>i(0) = 0 = A + C</math>Which implies that:
<templatedata>
:<math>C = -A = 1/R</math>So the response to a DC voltage source turning on at t=0 to one volt (called the unit response μ) is:
{
:<math>i_\mu (t) = \frac{1}{R}(1 - e^{-\frac{t}{\frac{L}{R}}})</math>
"params": {
 
"1": {
Taking the derivative of this, get the impulse (δ) current is:
"label": "Displaytitle",
 
"suggested": true
:<math>i_\delta (t) = \frac{e^{-\frac{t}{\frac{L}{R}}}}{L}</math>
}
 
},
Now the current due to any arbitrary V<sub>S</sub>(t) can be found using the convolution integral:
"description": {
 
        "en": "Language switcher",
:<math>i(t) = \int_0^t i_\delta (t-\tau) V_s(\tau) d\tau = \int_0^t f(t-\tau)g(\tau)d\tau + C_1</math>
"de": "Sprachwechsler",
 
"fr": "Sélecteur de langue",
Don't think i<sub>δ</sub> as current. It is really <math>{d \over dt}\frac{current}{1 volt}</math>. V<sub>S</sub>(τ) turns into a multiplier.
    "nl": "Taal verandering"
==LRC Example==
}
Find the time domain expression for i<sub>o</sub> given that I<sub>s</sub> = cos(t + π/2)μ(t) amp.
}
 
</templatedata>
Earlier the step response for this problem was found:
</noinclude>
 
:<math> i_{o_\mu} = \frac{1}{2}(1 - e^{-t}(\cos t + \sin t))</math>
 
The impulse response is going to be the derivative of this:
 
:<math>i_{o_\delta} = {d i_{o_\mu} \over dt} = 0 + \frac{1}{2}e^{-t}(\cos t + \sin t) - \frac{1}{2}e^{-t}(-\sin t + \cos t)</math>
:<math>i_{o_\delta} = \frac{1}{2}e^{-t}(\cos t + \sin t + \sin t - \cos t) = e^{-t}\sin t</math>:<math>I_s = 1 + \cos t</math>
:<math>i_o(t) = \int_0^t i_{o_\delta} (t-\tau) I_s(\tau) d\tau + C_1</math>
:<math>i_o(t) = \int_0^t e^{-(t-\tau)}\sin (t-\tau) (1 + \cos \tau) d\tau + C_1</math>
:<math>i_o(t) = \frac{\cos t}{5} + \frac{2 \sin t}{5} - \frac{7 e^{-t}\cos t}{10} - \frac{11 e^{-t}\sin t}{10} + \frac{1}{2} + C_1</math>
 
The Mupad code to solve the integral (substituting x for τ) is:<pre>f := exp(-(t-x)) *sin(t-x) *(1 + cos(x));<br>S := int(f,x = 0..t)</pre>
==Finding the integration constant==
 
:<math>i_o(0_+) = 0 = \frac{1}{5} - \frac{7}{10} + \frac{1}{2} + C_1</math>
 
This implies:
 
:<math>C_1 = 0</math>
 
[[en:{{FULLPAGENAME}}|Impulse Response]][[de:Impulsantwort]]
 
 
{{ContentNav|homelink=Documentation System|hometext=3|pagePrevious=Electric Pallet Truck Alligator{{!}}Operating instructions|pageNext=:Category:Bike{{!}}Categorized product images}}

Revision as of 09:18, 22 November 2022


Language switcher

Template parameters

ParameterDescriptionTypeStatus
Displaytitle1

no description

Unknownsuggested
No categories assignedEdit

Discussions